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Chapter 1

Partial Differentiation

M
IM

OON1.1 Functions of several variables

In real life, there are many formulas that depend on more than one variable.
For example: Area of a rectangular A = xy, so A is a function of the two
variables x and y. So, if Z = f(x, y), then Z is a function of two variables x
and y. Similarly, W = f(x, y, z), a function of variables x, y and z.
Also, U = f(x1, x2, . . . , xn), a function of variables x1, x2, . . . , xn.

Example: Evaluating the following functions?

• h(x, y, z) = ln(x2 + y + z2) at the point (-1,2,1).

• g(r, s, t) =
√
r2 + s2 + t2 at the point (3,0,4).

• f(x, y, z) = e
(x+y)

z at the point (ln 2, ln 4, 3).

• T (r, θ) = cos(
√
r2θ2 − 1) at the point (-1,-1).

Solution:

• The value of h(x, y, z) = ln(x2 + y + z2) at the point (-1,2,1) is

h(−1, 2, 1) = ln
(

(−1)2 + 2 + (1)2
)

= ln 4.

• The value of g(r, s, t) =
√
r2 + s2 + t2 at the point (3,0,4) is

g(3, 0, 4) =
√

(3)2 + (0)2 + (4)2 = 5.

1



CHAPTER 1. PARTIAL DIFFERENTIATION

• The value of f(x, y, z) = e
(x+y)

z at the point (ln 2, ln 4, 3) is

f(ln 2, ln 4, 3) = e
(ln 2+ln 4)

3 = e
ln 8
3 = e

3 ln 2
3 = 2.

• The value of T (r, θ) = cos(
√
r2θ2 − 1) at the point (-1,-1) is

T (−1,−1) = cos
(√

(−1)2(−1)2 − 1
)

= cos(0) = 1.

1.2 Limit of a Function of Two Variables

We say that a function f(x, y) approaches the limit a as (x, y) approaches
(x0, y0) and write

lim
(x,y)−→(x0,y0)

f(x, y) = a.

Note the following rules hold if a, b ∈ R and

lim
(x,y)−→(x0,y0)

f(x, y) = a and lim
(x,y)−→(x0,y0)

g(x, y) = b

1.
lim

(x,y)−→(x0,y0)
f(x, y)± lim

(x,y)−→(x0,y0)
g(x, y) = a± b

2.
lim

(x,y)−→(x0,y0)
f(x, y)g(x, y) = ab

3.

lim
(x,y)−→(x0,y0)

f(x, y)

g(x, y)
=
a

b
, where b 6= 0

4.
lim

(x,y)−→(x0,y0)

[
f(x, y)

]n
= an

Example: Find the limits of the functions if possible ?M
IM

OON

1.
lim

(x,y)−→(
√

2,0)

(
x2 + xy

)
2.

lim
(x,y)−→(0,0)

(
sin(xy)− cos(y2)

)

2



CHAPTER 1. PARTIAL DIFFERENTIATION

3.

lim
(x,y)−→(2,−1)

[x+ y

x− y

]3

4.

lim
(x,y)−→(0,0)

x2 − xy√
x−√y

Solution

1.

lim
(x,y)−→(

√
2,0)

x2 + lim
(x,y)−→(

√
2,0)

xy = (
√

2)2 + (
√

2)(0) = 2 + 0 = 2

2.
lim

(x,y)−→(0,0)
sin(xy)− lim

(x,y)−→(0,0)
cos(y2) = sin(0)− cos(0) = −1

3. [ lim(x,y)−→(2,−1) x+ y

lim(x,y)−→(2,−1) x− y

]3

=
(1

3

)3

=
1

27

4.

lim
(x,y)−→(0,0)

x(x− y)√
x−√y

= lim
(x,y)−→(0,0)

x(
√
x+
√
y)(
√
x−√y)

√
x−√y

= 0(
√

0+
√

0) = 0

1.3 Partial Differentiation

M
IM

OON

Consider the function z = f(x, y), and let x change to x + ∆x, while y
remains constant. In this case, z will change to z + ∆z, so that

z + ∆z = f(x+ ∆x, y),

∆z = f(x+ ∆x, y)− z,
∆z = f(x+ ∆x, y)− f(x, y),

∆z

∆x
=
f(x+ ∆x, y)− f(x, y)

∆x
.

Now, upon taking the limit as ∆x goes to zero, we have the partial derivative
of z with respect to x:

∂z

∂x
= lim

∆x−→0

f(x+ ∆x, y)− f(x, y)

∆x
.

3



CHAPTER 1. PARTIAL DIFFERENTIATION

Note that the partial derivative can be denoted by either

∂z

∂x
or

∂f

∂x
or Zx or fx(x, y).

Similarly, we have for
∂z

∂y

∂z

∂y
= lim

∆y−→0

f(x, y + ∆y)− f(x, y)

∆y
.

Note that the partial derivative can be denoted by either

∂z

∂y
or

∂f

∂y
or Zy or fy(x, y).

Example: Using the limit definition of partial derivative to find
∂z

∂x
of the

function f(x, y) = xy? Solution

∂z

∂x
= lim

∆x−→0

(x+ ∆x)y − xy
∆x

,

= lim
∆x−→0

xy + y∆x− xy
∆x

,

= lim
∆x−→0

y∆x

∆x
,

= y.

Example: Find
∂z

∂x
and

∂z

∂y
?

M
IM

OON

a- f(x, y) = x2 + 3xy + y − 1

b- f(x, y) = y sin(xy)

c- f(x, y) =
√
x2 + y2

Solution

a-
∂z

∂x
= 2x+ 3y and

∂z

∂y
= 3x+ 1

b-
∂z

∂x
= y2 cos(xy) and

∂z

∂y
= xy cos(xy) + sin(xy)

c-
∂z

∂x
=

x√
x2 + y2

and
∂z

∂y
=

y√
x2 + y2

Example: Given f(x, y) = 3x2 − 2xy2 + 2, find fx(−3, 0) and fy(2,−1)?
Solution
We have fx = 6x− 2y2 and fy = −4xy so fx(−3, 0) = 6(−3)− 2(0)2 = −18
and fy(2,−1) = −4(2)(−1) = 8.

4



CHAPTER 1. PARTIAL DIFFERENTIATION

1.3.1 Higher Order Derivatives

We can form the second order derivative with respect to x where
∂

∂x

(∂z
∂x

)
=
∂2z

∂x2
and

∂

∂x

(∂z
∂y

)
=

∂2z

∂x∂y
.

Similarly, we can form second order derivative with respect to y where
∂

∂y

(∂z
∂y

)
=
∂2z

∂y2
and

∂

∂y

(∂z
∂x

)
=

∂2z

∂y∂x
.

Note that in general,
∂2z

∂x∂y
=

∂2z

∂y∂x
.

∂2z

∂x2
= zxx and

∂2z

∂x∂y
= zxy

Similarly,
∂2z

∂y2
= zyy and

∂2z

∂y∂x
= zyx

Example: Verify that wyx = wxy if w(x, y) = x2 − xy + y2?
Solution
We have wx = 2x − y and wxy = −1. We have also wy = −x + 2y and
wyx = −1. Thus, wyx = −1 = wxy

Example: Find
∂4f

∂s∂r∂s∂t
if f(r, s, t) = 1− 2rs2t+ r2s?

Solution

M
IM

OON
We first differentiate with respect to the variable s, then r, then s again

, and finally with respect to t. We have

∂f

∂s
= −4rst+ r2,

∂2f

∂s∂r
= −4st+ 2r,

∂3f

∂s∂r∂s
= −4t,

∂4f

∂s∂r∂s∂t
= −4.

Example: If z = ex
2+y2

, then show that yzx − xzy = 0?
Solution
We first need to find zx and zy. So, zx = 2xex

2+y2

and zy = 2yex
2+y2

. Thus,
by substituting into yzx − xzy we get

yzx − xzy = 2yxex
2+y2 − 2yxex

2+y2

,

= 0.

Example: If z = f(x+ cy) + g(x− cy) , then show that c2zxx − zyy = 0?
Solution

5



CHAPTER 1. PARTIAL DIFFERENTIATION

Assume u = x + cy and v = x − cy so we have ux = 1, vx = 1 and uy =
c, vy = −c. To find zxx

zx = f
′
(u)ux + g

′
(v)vx

= f
′
(x+ cy) + g

′
(x− cy).

Also,

zxx = f
′′
(u)ux + g

′′
(v)vx

= f
′′
(x+ cy) + g

′′
(x− cy).

Now, to find zyy

zy = f
′
(u)uy + g

′
(v)vy

= cf
′
(x+ cy)− cg′

(x− cy).

Also,

zyy = cf
′′
(u)ux − cg

′′
(v)vx

= c2f
′′
(x+ cy) + c2g

′′
(x− cy).

Thus, by substituting into c2zxx − zyy we get

c2zxx − zyy = c2f
′′
(x+ cy) + c2g

′′
(x− cy)− c2f

′′
(x+ cy)− c2g

′′
(x− cy).

= 0.

Example: Consider a function T = ln(
√
r2 + s2). Prove that r

∂T

∂r
+s

∂T

∂s
= 1.

Solution

M
IM

OON

We know that T =
1

2
ln(r2 + s2) then

∂T

∂r
=

1

2

[ 2r

r2 + s2

]
=

r

r2 + s2
,

and

∂T

∂s
=

1

2

[ 2s

r2 + s2

]
=

s

r2 + s2
.

Thus, by substituting into r
∂T

∂r
+ s

∂T

∂s

r
[ r

r2 + s2

]
+ s
[ s

r2 + s2

]
=
r2 + s2

r2 + s2
= 1.

6



CHAPTER 1. PARTIAL DIFFERENTIATION

1.4 Maxima and Minima

M
IM

OON

Suppose that f(x, y) and its first and second partial derivatives are con-
tinuous at (a, b) (critical point) and fx(a, b) = fy(a, b) = 0, then

(i) f(x, y) has a local maximum at (a, b) if

fxx(a, b) < 0 and fxx(a, b)fyy(a, b)−
[
fxy(a, b)

]2

> 0.

(ii) f(x, y) has a local minimum at (a, b) if

fxx(a, b) > 0 and fxx(a, b)fyy(a, b)−
[
fxy(a, b)

]2

> 0.

(iii) f(x, y) has a saddle point at (a, b) if

fxx(a, b)fyy(a, b)−
[
fxy(a, b)

]2

< 0.

Note that to find the critical points of f(x, y), we suppose both fx(x, y) and
fy(x, y) = 0, then we solve the equation to x and y.
Example: Find local maxima, local minima and saddle points of the functions

(i) f(x, y) = x2 + xy + y2 + 3x− 3y + 4

(ii) f(x, y) = xy − x2 − y2 − 2x− 2y + 4

(iii) f(x, y) = x2 + xy + y2 + 2y + 5

Solution
(i) We need firstly to find the critical points of f(x, y), where

fx(x, y) = 2x+ y + 3 = 0 and fy(x, y) = x+ 2y − 3 = 0.

Thus, there is one critical point (−3, 3). Also, we have

fxx(−3, 3) = 2, fyy(−3, 3) = 2, and fxy(−3, 3) = 1

so fxx(−3, 3) = 2 > 0 and

fxx(−3, 3)fyy(−3, 3)−
[
fxy(−3, 3)

]2

> 0

(2)(2)− (1)2 = 3 > 0.

7



CHAPTER 1. PARTIAL DIFFERENTIATION

Thus, f(x, y) has a local minimum at (−3, 3) which is f(−3, 3) = −5.

(ii) We need firstly to find the critical points of f(x, y), where

fx(x, y) = y − 2x− 2 = 0 and fy(x, y) = x− 2y − 2 = 0.

Thus, there is one critical point (−2,−2). Also, we have

fxx(−2,−2) = −2, fyy(−2,−2) = −2, and fxy(−2,−2) = 1

so fxx(−2,−2) = −2 < 0 and

fxx(−2,−2)fyy(−2,−2)−
[
fxy(−2,−2)

]2

> 0

(−2)(−2)− (1)2 = 3 > 0.

Thus, f(x, y) has a local maximum at (−2,−2) which is f(−2,−2) = 8.

M
IM

OON
(iii) We need firstly to find the critical points of f(x, y), where

fx(x, y) = 2x+ y + 3 = 0 and fy(x, y) = x+ 2 = 0.

Thus, there is one critical point (−2, 1). Also, we have

fxx(−2, 1) = 2, fyy(−2, 1) = 0, and fxy(−2, 1) = 1

so

fxx(−2, 1)fyy(−2, 1)−
[
fxy(−2, 1)

]2

< 0

(2)(0)− (1)2 = −1 < 0.

Thus, f(x, y) has a saddle point at (−2, 1).

8
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1.5 Exercises

M
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Q1 : Find the limits of the functions below

lim
(x,y)−→(0,4)

x
√
y

lim
(x,y)−→(1,1)

x2 − y2

x− y

lim
(x,y)−→(2,2)

x+ y − 4√
x+ y − 2

lim
(x,y)−→(3,4)

√
x−
√
y − 1

x− y − 1

lim
(x,y)−→(0,0)

√
x2 − 2y3 − 2xy2 + xy√

x+ y

Q2 : Find
∂z

∂x
and

∂z

∂y

(i) z = 5xy − 7x2 − y2 + 3x− 6y

(ii) z =
x

x2 + y2

(iii) z = exy ln(y)

(v) z = tan−1(
y

x
)

Q3 : Verify that
∂2F

∂x∂y
=

∂2F

∂y∂x
if

(i) F = x sin(y) + y sin(x) + xy

(ii) F = ln(2x+ 3y)

(iii) F = ex + x ln(y) + y ln(x)

Q4 : Prove that

(i) If G(r,Θ) =
√
r2 + Θ2, then rGr + ΘGΘ = G.

(ii) If W =
x

y
+
y

z
+
z

x
, then xWx + yWy + zWz = 0.

9
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(iii) If V = f(s+ t) + sg(s+ t), then Vss − Vst + Vtt = 0.

M
IM

OON

Q5 : Find local maxima, local minima and saddle points of the
functions below

(1) f(x, y) = 2x2 + 3xy + 4y2 − 5x+ 2y

(2) f(x, y) = 3y2 − 3x2 − 2y3 − 3x2 + 6xy

(3) f(x, y) = x3 + 3x2 + y3 − 3y2 − 8

10



Chapter 2

Double Integrals

In this chapter, we will learn how to evaluate double integrals. Let
z = f(x, y) be a function which is continuous on closed region
D : a1(y) ≤ x ≤ a2(y), b1(x) ≤ y ≤ b2(x). We may interpret the double
integral of z over D as the volume. So, we define this volume to be

volume =

∫ ∫
D

f(x, y)dA =

∫ y=b2(x)

y=b1(x)

∫ x=a2(y)

x=a1(y)

f(x, y)dxdy.

Or

volume =

∫ ∫
D

f(x, y)dA =

∫ x=a2(y)

x=a1(y)

∫ y=b2(x)

y=b1(x)

f(x, y)dydx.

M
IM
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2.1 Properties of Double integrals

If f(x, y) and g(x, y) are continuous on the region D then∫ ∫
D

cf(x, y)dA = c

∫ ∫
D

f(x, y)dA for any number c.∫ ∫
D

[
f(x, y)∓ g(x, y)

]
dA =

∫ ∫
D

f(x, y)dA∓
∫ ∫

D

g(x, y)dA.∫ ∫
D

f(x, y)dA =

∫ ∫
D1

f(x, y)dA+

∫ ∫
D2

f(x, y)dA,

if D is the union of two regions D = D1 ∪D2.
Note that if f(x, y) is continuous over the region D : a ≤ x ≤ b, c ≤ y ≤ d,
then ∫ ∫

D

f(x, y)dA =

∫ d

c

∫ b

a

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx.

11



CHAPTER 2. DOUBLE INTEGRALS

Example: Calculate∫ ∫
D

f(x, y)dA for f(x, y) = 1− 6x2y and D : 0 ≤ x ≤ 2,−1 ≤ y ≤ 1.

Solution

∫ ∫
D

f(x, y)dA =

∫ 1

−1

∫ 2

0

(1− 6x2y)dxdy

=

∫ 1

−1

[
x− 2x3y

]2

0
dy,

=

∫ 1

−1

(2− 16y)dy,

=
[
2y − 8y2

]1

−1

= 4.

Now by changing the order of integration gives the same answer:∫ 2

0

∫ 2

−1

(1− 6x2y)dydx =

∫ 2

0

[
y − 3x2y2

]1

−1
dx,

=

∫ 2

0

[(1− 3x2)− (−1− 3x2)]dx

= 4.

M
IM
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Example: Find the volume of solid bounded by the lines x = 4 and y = 8

and the surface z = 4− x

2
+
y2

16
.

Solution
By drawing (3-dimensional) the lines x = 4 and y = 8 plane and the surface

z = 4− x

2
+
y2

16
which gives (see Figure 1)

12
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volume =

∫ ∫
D

zdA

=

∫ 4

0

∫ 8

0

(4− x

2
+
y2

16
)dydx

=

∫ 4

0

[
4y − yx

2
+
y3

48

]8

0
dx,

=

∫ 2

0

(
128

3
− 2x2)dx

= 416/3. Figure 1

Example: Find the volume of solid bounded by the lines x = 2 and y = 1
and the plane z = 4− x− y.
Solution
By drawing the lines x = 1 and y = 1 and the plane
z = 4− x− y which gives (see Figure 2)

volume =

∫ ∫
D

zdA

=

∫ 2

0

∫ 1

0

(4− x− y)dydx

=

∫ 1

0

[
4y − xy +

y2

2

]2

0
dx,

=

∫ 2

0

(
7

2
− x)dx

= 5. Figure 2M
IM
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2.2 Areas and Centers of Mass

In this section, we show how to use double integrals to calculate the areas of
bounded regions in the plane. Also, we study the physical problem of finding
the center of mass of a thin flat plate covering a region in plane.

13
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2.2.1 Areas of bounded regions in the plane

We define the area of a closed, bounded plane region D is A =

∫ ∫
D

dA

Example: Find the area of the region D bounded by y = x and y = x2 in
the first quadrant?
Solution
We sketch the region D (see Figure 3) and calculate the area as

A =

∫ ∫
D

dA

=

∫ 1

0

∫ x

x2

dydx

=

∫ 1

0

[
y
]x
x2
dx,

=

∫ 1

0

(x− x2)dx

= 1/6. Figure 3

Example: Find the area of the region D bounded by y = x + 2 and y = x2

in the first quadrant?
Solution
We sketch the region D (see Figure 4) and calculate the area as

A =

∫ ∫
D

dA

=

∫ 2

−1

∫ x+2

x2

dydx

=

∫ 2

−1

[
y
]x
x2
dx,

=

∫ 2

−1

(x− x2 + 2)dx

= 9/2. Figure 4

Now if we change the order of integration what will we see?

M
IM

OON
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2.2.2 Centers of mass for thin flat plates

We assume the distribution of mass in such a plate to be continuous. A ma-
terial’s density function, denoted by δ(x, y) is the mass per unit area. The
mass of a plate is obtained by integrating the density function over the re-
gion D forming the plate . The first moment about an axis is calculated by
integrating over D the distance from the axis times the density.

M
IM

OON
The center of mass formulas for thin flat plates covering a region

D in the xy− plane

Mass: M =

∫ ∫
D

δ(x, y)dA, where δ(x, y) is density function

First moments: Mx =

∫ ∫
D

yδ(x, y)dA, and My =

∫ ∫
D

xδ(x, y)dA

Center of mass: x =
My

M
and y =

Mx

M
.

Example: Find a center of mass of a thin plat of density δ(x, y) = 6x+6y+6
bounded by x = 1 and y = 2x in the first quadrant?

Solution
We sketch the region x = 1 and y = 2x (see Figure 5) and calculate the Mass
as

Mass: M =

∫ ∫
D

δ(x, y)dA, where δ(x, y) is density function

=

∫ 1

0

∫ 2x

0

(6x+ 6y + 6)dydx

=

∫ 1

0

[
6xy + 3y2 + 6y

]2x

0
dx,

=

∫ 1

0

(24x2 + 12x)dx

= 14. Figure 5

The first moments about the x− axis is

15
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First moments: Mx =

∫ ∫
D

yδ(x, y)dA

=

∫ 1

0

∫ 2x

0

(6xy + 6y2 + 6y)dydx

=

∫ 1

0

[
3xy2 + 3y3 + y2

]2x

0
dx,

=

∫ 1

0

(28x3 + 12x2)dx

= 11.

The first moments about the y− axis is

First moments: My =

∫ ∫
D

xδ(x, y)dA

=

∫ 1

0

∫ 2x

0

(6x2 + 6xy + 6x)dydx

=

∫ 1

0

[
6x2y + 3xy2 + 6xy

]2x

0
dx,

=

∫ 1

0

(24x3 + 12x2)dx

= 10.

Thus, the center of mass are

x =
My

M
=

10

14
=

5

7
and y =

Mx

M
=

11

14
.
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2.3 Double Integral in Polar form

This section shows how to change a Cartesian integral
∫ ∫

D
f(x, y)dA, into

a polar integral
∫ ∫

G
δ(r, θ)rdrdθ, which is easier to evaluate.

Recall that if P is a point in two-dimensional space. Then the polar coor-
dinates of P are (r, θ) if P is r units from the origin, and the ray from the
origin to P makes an angle θ with the positive x− axis (see figure 6 ). The
relationship between polar coordinates and cartesian coordinates are

x = r cos(θ), y = r sin(θ), r =
√
x2 + y2 and θ = tan−1(

y

x
)

Figure 6

16
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Polar integration formula∫ ∫
D

f(x, y)dA =

∫ ∫
G

(r cos θ, r sin θ) rdrdθ whereG : α ≤ θ ≤ β, b(θ) ≤ r ≤ a(θ).

Note that for all point (r, θ) in the region G:

r ≥ 0 and 0 ≤ θ ≤ 2Π.

Example: Evaluate
∫ ∫

D
ex

2+y2

dydx, where D is region bounded by the

x− axis and the curve y =
√

1− x2 ?
Solution
There is no way to integrate ex

2+y2

with respect to either x or y. Thus, we
need to use the polar coordinates which enables us to evaluate the integral as

y =
√

1− x2 =⇒ y2 = 1−x2 =⇒ x2+y2 = 1 =⇒ r2 = 1 =⇒ r = ∓1 =⇒ r = 1

We sketch the region y =
√

1− x2 and x−axis (see Figure 7) so

M
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∫ ∫

D

ex
2+y2

dydx =

∫ Π

0

∫ 1

0

(rer
2

)drdθ

=

∫ Π

0

[1

2
er
]1

0
dθ,

=
1

2

∫ 1

0

(e− 1)dθ

=
Π

2
(e− 1). Figure 7

Example: Evaluate
∫ 0

−1

∫ 0

−
√

1−x2

2

1 +
√
x2 + y2

dydx.

Solution

There is no way to integrate
2

1 +
√
x2 + y2

with respect to either x or y. By

using a polar coordinates gives

y = −
√

1− x2 =⇒ y2 = 1−x2 =⇒ x2+y2 = 1 =⇒ r2 = 1 =⇒ r = ∓1 =⇒ r = 1

17
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We sketch y = −
√

1− x2, y = 0, x = 0 and x = −1 (see Figure 8) so∫ 0

−1

∫ 0

−
√

1−x2

2

1 +
√
x2 + y2

=

∫ 3 Π
2

Π

∫ 1

0

2r

1 + r
drdθ

=

∫ 3 Π
2

Π

[
r − ln(r + 1)

]1

0
dθ,

=
1

2

∫ 1

0

(1− ln 2)dθ

= (1− ln 2)Π. Figure 8

Example: Evaluate by using polar integral

∫ 1

−1

∫ √1−x2

−
√

1−x2

(x2 + y2)dydx.

Solution

M
IM
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2.4 Exercises

Q1 : Evaluate each of the following double integral

(1)

∫ ∫
D

f(x, y)dA for f(x, y) = x2y − 2xy and D : 0 ≤ x ≤ 3,−2 ≤ y ≤ 0.

(2)

∫ ∫
D

f(x, y)dA for f(x, y) = x sin y and D : 0 ≤ x ≤ Π, 0 ≤ y ≤ x.

(3)

∫ ∫
D

f(x, y)dA for f(x, y) = ex+y and D : 0 ≤ x ≤ ln y, 1 ≤ y ≤ ln 8.

M
IM

OONQ2 : Find the volume of the solid cut from the first actant by
the surface z = 4− x2 − y?
Q3 : Find the area of the region D for each of following by using
the double integral

(1) D : The lines x+ y = 2, x = 0 and y = 0.

(2) D : The parabola x = −y2 and the line y = x+ 2.

(3) D : The curve y = ex and the lines y = 0, x = 0 and x = ln 2.

Q4 : Evaluate

(1)

∫ 1

0

∫ 1

y

sinx

x
dxdy

(2)

∫ 1

0

∫ 1

x

ey
2

dydx

(3)

∫ 3

0

∫ 9

x2

x cos y2dydx

(4)

∫ ln 2

0

∫ √(ln 2)2−y2

0

e
√

x2+y2
dxdy

Q5 : Find a center of mass of a thin plat of density δ(x, y) = 3
bounded by y = 2− x2, y = x and y− axis?

Q6 : Evaluate by using polar integral

∫ a

−a

∫ √a2−x2

−
√
a2−x2

dydx.
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Chapter 3

Introduction to Vectors

M
IM

OONIn weather reports, we hear that the wind has speed and direction. One
way of representing a wind of 30k (kilometers) per hour from the southwest,
is to draw arrow aimed in the direction in which the wind blow, scaled.

Definition: A vector is a direction line segment. The direction line seg-

ment V =
−→
PQ has initial point P and terminal point Q.

If V is two-dimensional with P = (x1, y1) and Q = (x2, y2) as points in
the plane then

V =< x2 − x1, y2 − y1 > .

Similarly, if V is three-dimensional with P = (x1, y1, z1) and Q = (x2, y2, z2)
as points in the plane then

V =< x2 − x1, y2 − y1, z2 − z1 > .

Definition: The length of the vector (three-dimensional) V =
−→
PQ is the

non-negative number

| V |=
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Example: If P (1, 0, 1), Q(2, 0, 3) andR(3, 5, 6) are points in three-dimensional,
then plot the points and write down the vectors to each of the following−→
PQ,
−→
PR and

−→
RQ?

Solution
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For plot see Figure 9 and for find
−→
PQ,
−→
PR and

−→
RQ we have

V1 =
−→
PQ =< x2 − x1, y2 − y1, z2 − z1 >

=< 2− 1, 0− 0, 3− 1 >

=< 1, 0, 2 > .

V2 =
−→
PR =< x2 − x1, y2 − y1, z2 − z1 >

=< 3− 1, 5− 0, 6− 1 >

=< 2, 5, 5 > .

V3 =
−→
RQ =< x2 − x1, y2 − y1, z2 − z1 >

=< 2− 3, 0− 5, 3− 6 >

=< 2, 5, 5 > . Figure 9

Example: Find length of the vectors V1 =
−→
PQ, V2 =

−→
PR and V3 =

−→
RQ where

P (1, 0, 1), Q(2, 0, 3) and R(3, 5, 6)?

M
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Solution

| V1 |=
−→
PQ =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

=
√

(2− 1)2 + (0− 0)2 + (3− 1)2

=
√

5.

| V2 |=
−→
PR =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

=
√

(3− 1)2 + (5− 0)2 + (6− 1)2

=
√

54

= 3
√

6.

| V3 |=
−→
RQ =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

=
√

(2− 3)2 + (0− 5)2 + (3− 6)2

=
√

35.

3.0.1 Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar
multiplication. A scalar is simple a real number.
Definition: Let V1 =< x1, x2, . . . , xn > and V2 =< y1, y2, . . . , yn > be
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vectors with k ∈ R. Then

V1 ∓ V2 =< x1 ∓ y1, x2 ∓ y2, . . . , xn ∓ yn >,

and
kV1 =< kx1, kx2, . . . , kxn > .

Note that the zero vector is written
−→
0 =< 0, 0, . . . , 0 > .

Properties of Vector Operations

Let V1, V2 and V3 be vectors and k ∈ R. Then

(1) V1 + V2 = V2 + V1

(2) V1 + (V2 + V3) = (V1 + V2) + V3

(3) V1 +
−→
0 = V1

(4) V1 − V1 =
−→
0

(5) k(V1 + V2) = kV1 + kV2

M
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Unit Vectors:

Let V = (x1, x2, . . . , xn) be a non-zero vector. Then, a vector of length 1
is called a unit vector and the unit vector is denoted by

Unit Vector of V =
〈 x1

| V |
,
x2

| V |
, . . . ,

xn
| V |

〉
.

The three most important unit vectors are

i =< 1, 0, 0 >, j =< 0, 1, 0 >, and k =< 0, 0, 1 > .

Thus, any vector V =< x1, x2, . . . , xn > can be written as linear of the
standard unit vectors as follows

V =< x1, x2, x3 > =< x1, 0, 0 > + < 0, x2, 0 > + < 0, 0, x3 >

= x1 < 1, 0, 0 > +x2 < 0, 1, 0 > +x3 < 0, 0, 1 >

= x1i+ x2j + x3k.
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Dot Product:

The dot product of two vectors is defined as following:

If V1 =< x1, x2, . . . , xn > and V2 =< y1, y2, . . . , yn > then V1·V2 = x1·y1+x2·y2+. . .+xn·yn

Properties of Dot Product

Let V1, V2 and V3 be vectors and k ∈ R. Then

(1) V1 · V2 = V2 · V1

(2) V1 · (V2 + V3) = (V1 · V2) + (V1 · V3)

(3) V1 ·
−→
0 =

−→
0

(4) V1 · V1 = |V1|2

(5) k(V1 · V2) = (kV1) · V2 = V1 · (kV2)

M
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Angle Between Vectors

We define the angle between two non-zero vectors V and U as

cos θ =
V · U
|V ||U |

Note that 0 < θ < Π. If they point in same direction, then the angle between
them is 0 , and Π if they point in opposite direction.

Example: If V = i− j − k and U = 2i+ j + k, then find

1)The unit vector of V and U.
2)The angle between two vectors V and U.
Solution:
1) We will find the unit vector of V and U.

|V | =
√

(1)2 + (−1)2 + (−1)2 =
√

3 and |U | =
√

(2)2 + (1)2 + (1)2 =
√

6

So, the unit vector of V is V =
i√
3
− j√

3
− k√

3
and U =

2i√
6

+
j√
6

+
k√
6
.
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2)We will find the angle between two vectors V and U.

V · U = (1)(2) + (−1)(1) + (−1)(1) = 2− 1− 1 = 0

|V | =
√

(1)2 + (−1)2 + (−1)2 =
√

3

|U | =
√

(2)2 + (1)2 + (1)2 =
√

6

cos θ =
V · U
|V ||U |

=
0√
3
√

6

So, θ = cos−1(0) = Π
2
.

Note that if the dot product of two vectors is zero, then they are perpendic-
ular

V · U = 0⇐⇒ V ⊥ U.

M
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√

3j and
B = (1−

√
3)i+ (1 +

√
3)j?

Solution:

A ·B = (1)(1−
√

3) + (
√

3)(1 +
√

3) = 4

|A| =
√

(1)2 + (
√

3)2 =
√

4 = 2

|B| =
√

(1−
√

3)2 + (1 +
√

3)2 =
√

8 = 2
√

2

cos θ =
A ·B
|A||B|

=
4

4
√

2

So, θ = cos−1(
1√
2

) =
Π

4
.

Example: Find a if (V = ai+ 5j + 6k) ⊥ (U = ai+ aj + k)?
Solution:
We have V · U = 0⇐⇒ V ⊥ U. So,

V · U = (a)(a) + (5)(a) + (6)(1)

= a2 + 5a+ 6

= (a+ 3)(a+ 2)

That is (a+ 3)(a+ 2) = 0 =⇒ a = −3 or a = −2.
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The Cross Product The cross product of two vectors is defined as
follows. If V1 = x1i + x2j + x3k and V2 = y1i + y2j + y3k, then we have the
vector

V1 × V2 =
i j k
x1 x2 x3

y1 y2 y3

Properties of the Cross Product

Let V1, V2 and V3 be vectors and s, r ∈ R. Then

(1) V1 × V2 = −(V2 × V1)

(2) V1 × (V2 + V3) = (V1 × V2) + (V1 × V3)

(3) (V2 + V3)× V1 = (V2 × V2) + (V3 × V1)

(4)
−→
0 × V1 =

−→
0

(5) (sV1)× (rV2) = (sr)(V1 × V2)

Example: Find V × U if V = 4i+ 2j − k and U = −3i+ 2j + 3k?
Solution:

V × U =
i j k
4 2 −1
−3 2 3

= 8i− 9j + 14k

Note that non-zero vectors V1 and V2 are parallel if and only if V1 × V2 = 0
Example: Show that the vector V = 5i − j + k is parallel to the vector
U = −15i+ 3j − 3k?
Solution:

V × U =
i j k
5 −1 1
−15 3 −3

= 0.

Note that if

V1 = x1i+ x2j + x3k, V2 = y1i+ y2j + y3k, and V3 = z1i+ z2j + z3k,

then

(V1 × V2) · V2 =
x1 x2 x3

y1 y2 y3

z1 z2 z3

= constant
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Example: Verify that (U × V ) ·W = (V ×W ) · U where

U = i− j + k, V = 2i+ j − 2k and W = −i+ 2j − k

Solution:

(U × V ) ·W =
1 −1 1
2 1 −2
−1 2 −1

= 4

and

(V ×W ) · U =
2 1 −2
−1 2 −1
1 −1 1

= 4.

M
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OONVector Field
A vector field on a domain in space is a function that assigns a vector to
each point in the domain. A field of three dimensional vector might have a
formula like

f(x, y, z) = M(x, y, z)i+N(x, y, z)j + P (x, y, z)k.

Gradient Field
The gradient field of a differentiable f(x, y, z) is the field of gradient vectors

F = ∇f = fx(x, y, z)i+ fy(x, y, z)j + fz(x, y, z)k

Divergence
The divergence of a vector filed f = M(x, y, z)i+N(x, y, z)j +P (x, y, z)k is

divf = f · ∇ = Mx(x, y, z) +Ny(x, y, z) + Pz(x, y, z)

Example: Find the gradient field and the divergence of f(x, y, z) = xyz.
Solution:
The gradient field of f is

∇f = fx(x, y, z)i+ fy(x, y, z)j + fz(x, y, z)k = yzi+ xzj + xyk

and the divergence is

divf = f · ∇ = Mx(x, y, z) +Ny(x, y, z) + Pz(x, y, z) = 0
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Differential Equations

Basically, a differential equation is a relationship between a function and its
derivatives. We will consider first-ordinary differential equation (ode) as

(1)y + x
dy

dx
, (2)

dy

dx
= sinx sec y, (3)

dx

dy
=
x2 + xy

y2
.

M
IM

OON
4.1 Solutions of a Differential Equation

A solution of differential equation is any function which satisfies the differ-
ential equation identically.

Example: Consider the differential equation

d2y

dx2
− 4y = ex,

verify that y = −1

3
ex is a solution.

Solution:
Note that

dy

dx
= −1

3
ex and

d2y

dx2
= −1

3
ex.

Now, by substituting into the differential equation

d2y

dx2
− 4y =− 1

3
ex − 4(−1

3
ex)

=ex(
−1

3
+

4

3
)

=ex.
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4.2 Method of solution for first-ordinary dif-

ferential equation

M
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Method1: Variables Separable Equation
A differential equation which can be written in the form

dy

dx
= f(x)g(x).

We solve a variables separable equation by separating the variables and in-
tegrating.
Example: Solve the following equations

(1)
dy

dx
=
x− xy2

x2y − y
(2)xydy + (x2 + 1)dx = 0.

Solution:
solution for (1)

dy

dx
=
x− xy2

x2y − y
dy

dx
=
x(1− y2)

y(x2 − 1)

ydy

1− y2
=

xdx

x2 − 1

−1

2
ln |1− y2| =1

2
ln |x2 − 1|+ ln c

ln |1− y2| =− ln |x2 − 1| − 2 ln c

ln |1− y2| =− ln |x2 − 1|+ A, by putting− 2 ln c = A

1− y2 =
1

A(x2 − 1)
.

Now solution for (2),

xydy + (x2 + 1)dx = 0 =⇒ydy +
(x2 + 1)

x
dx = 0

=⇒ydy = −xdx− dx

x

=⇒y2

2
= −x

2

2
− lnx+ c

=⇒y2 = x2 − 2 lnx+ A, where A = 2c.
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Method2: Homogeneous Equation
If we can write the equation in the form

dy

dx
= f(

y

x
) or

dx

dy
= f(

x

y
)

then we say the differential equation is homogeneous. For homogeneous
equation can be transformed to a variables separable equation by putting
v = y

x
or v = x

y
. Then,

v =
y

x
=⇒ y = xv =⇒ dy

dx
= x

dv

dx
+ v

or

v =
x

y
=⇒ y = xv =⇒ dx

dy
= y

dv

dx
+ v.

Example: Solve the following equations

(1)
dy

dx
=
x− y
x+ y

(2)
dx

dy
=
y2 + y2e(x

y
)2

+ 2x2e(x
y

)2

2xye(x
y

)2 .

Solution:
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(1)let v = y

x
that is y = xv =⇒ dy

dx
= x dv

dx
+ v so we will have

dy

dx
=
x− y
x+ y

dy

dx
=

1− y/x
1 + y/x

x
dv

dx
+ v =

1− v
1 + v

, by using v =
y

x
and

dy

dx
= x

dv

dx
+ v

x
dv

dx
=

1− v
1 + v

− v

x
dv

dx
=

1− 2v − v2

1 + v

Now, separate variables and solve

(1 + v)dv

1− 2v − v2
=
dx

x

−1

2
ln |1− 2v − v2| = lnx+ ln c

ln |1− 2v − v2| =− 2 lnx− 2 ln c

ln |1− 2v − v2|+ lnx2 =A, where A = −2 ln c

ln |x2(1− 2v − v2)| =A
x2(1− 2(y/x)− (y/x)2) =eA.
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(2)let v = x
y

that is x = yv =⇒ dx
dy

= y dv
dy

+ v so we will have

dx

dy
=
y2 + y2e(x

y
)2

+ 2x2e(x
y

)2

2xye(x
y

)2

dx

dy
=
y2/y2 + y2/y2e(x

y
)2

+ 2x2/y2e(x
y

)2

2xy/y2e(x
y

)2

y
dv

dy
+ v =

1 + e(v)2
+ 2v2e(v)2

2ve(v)2

y
dv

dy
=

1 + e(v)2
+ 2v2e(v)2

2ve(v)2 − v

y
dv

dy
=

1 + e(v)2
+ 2v2e(v)2 − 2v2e(v)2

2ve(v)2

y
dv

dy
=

1 + e(v)2

2ve(v)2

Now, separate variables and solve

dy

y
=

2ve(v)2
dv

1 + e(v)2

ln |y| = ln(1 + e(v)2

) + ln c

y =(1 + e(v)2

)c

y =(1 + e(x
y

)2

)c.

M
IM

OON

Note that if y(0) = 1, then we have

y =(1 + e(x
y

)2

)c

1 =(1 + e( 0
1

)2

)c

1 =(1 + 1)c, where e0 = 1

c =1/2.

Thus, y = 1
2
(1 + e(x

y
)2

) if y(0) = 1.
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Method3: Exact Differential Equation
A differential equation

M(x, y)dx+N(x, y)dy = 0,

is exact if and only if
∂M(x, y)

∂y
=
∂N(x, y)

∂x
.

M
IM

OON
Example: Solve 2xydx+ (1 + x2)dy = 0

Solution:
We have 2xy︸︷︷︸

M(x,y)

dx+ (1 + x2)︸ ︷︷ ︸
N(x,y)

dy = 0 and here

M(x, y) = 2xy and N(x, y) = x2,

therefore,
∂M(x, y)

∂y
= 2x =

∂N(x, y)

∂x
.

So, this equation is exact. Now,∫
x

M(x, y)dx =

∫
2xydx

g(x, y) =x2y + A(y)

By differentiating g(x, y) with respect to y we obtain

g(x, y) =x2y + A(y)

∂g

∂y
=x2 + A

′
(y)

Now, N(x, y) = 1 + x2 = x2 + A
′
(y) =⇒ A

′
(y) = 1 =⇒ A(y) = y + c.

The solution to the differential equation, which is given above is

g(x, y) = x2y + y + c.

Note that if g(x, y) = k then A = x2y + y =⇒ y = A
x2+1

, where k − c = A.
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M
IM

OON

Example: Solve (y2exy
2

+ 4x3)dx+ (2xyexy
2 − 3y2)dy = 0

Solution:
We have (y2exy

2

+ 4x3)︸ ︷︷ ︸
M(x,y)

dx+ (2xyexy
2 − 3y2)︸ ︷︷ ︸

N(x,y)

dy = 0 and here

M(x, y) = y2exy
2

+ 4x3 and N(x, y) = 2xyexy
2 − 3y2,

therefore,
∂M(x, y)

∂y
= 2yexy

2

+ 2xy3exy
2

=
∂N(x, y)

∂x
.

So, this equation is exact. Now,∫
x

M(x, y)dx =

∫
(y2exy

2

+ 4x3)dx

g(x, y) =exy
2

+ x4 + A(y)

By differentiating g(x, y) with respect to y we obtain

g(x, y) =exy
2

+ x4 + A(y)

∂g

∂y
=2xyexy

2

+ A
′
(y)

Now, N(x, y) = 2xyexy
2 − 3y2 = 2xyexy

2
+ A

′
(y) =⇒ A

′
(y) = −3y2 =⇒

A(y) = −y3 + c.

Thus, g(x, y) = exy
2

+ x4 − y3 + c =⇒ exy
2

+ x4 − y3 = A.
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Using Chain Rule with Partial Derivatives 

The Chain Rule for functions of a single variable studied in first stage says that 

when    ( ) is a differentiable function of x and    ( ) is a differentiable 

function of t, w is a differentiable function of t and 
  

  
 can be calculated by the 

formula
  

  
 

  

  

  

  
.   

For functions of two or more variables the Chain Rule has several forms. The 

form depends on how many variables are involved, but there are three general 

cases as a following:  

 

Case1: If    (     ) is a differentiable function and    ( )   
 ( )        (t)   are differentiable functions of    then: 

  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
  

Example: Prove that 
  

  
      , if                         

Solution: 
  

  
 

  

  

  

  
 

  

  

  

  
  

Note that  
  

  
     

  

  
       

  

  
        

  

  
     . 

Now, 
  

  
             ,                                       

  

  
    w     

  

  
 

         
  

  
                                                 x                   y 

         
  

  
                                                  

  

  
               

  

  
    

                                                                                                    t  

   

  Case2: If    (     ) where    (   )    (   )       
 (   )   If all four functions are differentiable functions   then   have 

partial derivatives with respect to   and   given by the formulas: 

 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
  

 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
  

  



 

 

 

 Example: Find  
  

  
     

  

  
 in terms of   and   if                 

      ,                (     )  
Solution:  By using the formulas in case2                                 w 
 
   

  
 

  

  

  

  
         

  

  

  

  
                

  

  

  

  
                            x       y        z 

  

  
 (  ) (  )   (  ) (   )  (  ) (

  

  (     ) 
)                (r ,s )   

  

  
 (      ) (  )   (     )      (      (     )) (

  

  (     ) 
)  

 
  

  
 (       )    (      )   (

       (     )

  (     ) 
) 

 
Now,  
   

  
 

  

  

  

  
         

  

  

  

  
                

  

  

  

  
  

  

  
 (  ) ( )   (  ) (

 

 
)  (  ) (

  

  (     ) 
) 

  

  
     (    )            (     )

 

 
 (      (     )) (

  

  (     ) 
) 

  

  
     (      )   

      

 
  (

       (     )

  (     ) 
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Case3: If    ( ) and     (   )   then   has partial derivatives with respect 

to   and   given by the formulas: 
  

  
 

  

  

  

  
 

 
  

  
 

  

  

  

  
 

Example: If    ( )            then show that   
  

  
  

  

  
 =  [  ( )]  

Solution:  By using the formulas in case3                                                                  w 
  

  
 

  

  

  

  
                                     

  

  
 

  

  

  

  
        

  

  
 

  

  
( )= [  ( )]                    

  

  
 

  

  
(  )     ( )                                         X            

Thus, 
  

  
  

  

  
 =  [  ( )]                                                                                       r                s 

 



Using Green's Theorem to Evaluate line integral 

If        and        having continuous first partial derivatives in an open region 

containing R.  Then  

 ∮                    
 

 ∬  
  

  
 

  

  
    

 
     

Where   is a positively simple closed curves 

Example: Verify Green's Theorem for∮          
 

, where   is 

the closed curve of the region bounded by                         Y=x 

Solution :                                                                                              (1,1) 

                                                                                                (0,0)  

Path one (  ): when               so,  

∮          
 

                
⇒    ∫            

  

 
 

  

 
  

 
 

 

 
 

  
 

Path two (  ): when             so,  

∮          
 

                     
⇒      ∫           

   

 
  

 
 

 

 
  

 
 

Thus, ∮          
 

 
 

  
 

 

 
 

 

  
 

Now, we can use Green's Theorem to change the line integral into a double integral over 

the region R: 

Taking:                        

              
       

  
           

       

  
      

∫
 

 

∫             ∫            
    

 

 

 

  

∫          
 

 

   
 

  
 

 

∮          
 

 ∬  
  

  
 

  

  
    

 

 
 

  
 



Example: Verify Green's Theorem for ∮          
 

,where   is 

the triangle having vertices                        

Solution: H.W 

Exercises 

Q1) Verify Green's Theorem for ∮          
 

,where   is the 

triangle having vertices                        

Q2)Verify Green's Theorem for ∮               
 

 ,Where   is 

the closed curve of the region bounded by:                       

Q3) Verify Green's Theorem for ∮            
 

 

Where   is the triangle having vertices                        

Q4)Verify Green's Theorem for ∮         
 

 Where   is the 

closed curve of the region bounded by:              √      

Q5) Apply Green's Theorem for ∮          
 

 where   is the 

square cut from the first quadrant by              

 

 




